
 Distributed Systems and
Network Architectures

NetArch 2009, Ascona, CH
March 18th, 2009

Jonathan M. Smith
University of Pennsylvania

http://www.cis.upenn.edu/~jms

 Design Space for Distributed
Applications

 Application Requirements
 Delay, delay variance, reliability, privacy,…

 Network Conditions
 Error, loss, congestion, topology,…

 Protocol Elements
 Links, multiplexers, headers, ACKs,…

 Clark/Tennenhouse SIGCOMM 90

Protocol Design (in the e2e world)

 Begins with problem to be solved,
including assumptions
 e.g., TCP’s “reliable bytestream”, over IP

 Optimization:
 Measure
 Identify common case
 Make it fast
 Repeat until satisfied.....

Critique of Methodology

 Pessimistic Design Style
 Assume worst-case
 Pare away functions to get “fast-path”

 Optimizations Fragile
 Environment Changes (WWW)
 Common Cases Change (delay, loss, ...)
 Things can break BADLY! (try at home :-)

Layered Network Protocols
 Fixed service and peer interfaces
 Static functions / algorithms

Protocol Protocol

High-level
Object

High-level
Object

Peer-to-peer
 interface

Service interface Service Interface

An alternative methodology

 Assume things are working well
 Detect when they are not (policy)
 Add functions (mechanism) to fix
 Functions are called “protocol boosters”
 An optimistic approach to transparently

achieving high end-to-end performance

Protocol boosters* for links
  Earliest work, RFC 5, “Decode-Encode Language”, Rulifson
  Protocol Elements added ‘‘as-needed’’

 D. Ritchie “A Stream I/O System”, BSTJ ‘84
  Useful to meet dynamic requirements

 Tschudin, “Flexible Protocol Stacks”, SIGCOMM ‘91
 O’Malley & Peterson, “A Dynamic Network Architecture”,

ACM ToCS, ‘92

Application

Booster DeBooster

Application

Host A Host B

Network
Element

Boosted Subnet

* “Protocol Boosters”, Feldmeier, et al., IEEE JSAC, 1998

8

Virtual Infrastructures, e.g., IP

 IP is a network interoperability layer
 Interoperable through minimality:

IP

TCP
UDP

NFS HTTP
WWW

ATM
Ether

SONET

Overlays (running at hosts)

Virtual Network Infrastructure
(runs globally)

Subnetworks (run IP locally)

Packet Format,
Addressing

Idea: Make waist
Programmable

9

Accelerate Network Evolution*
 Create programmable network nodes+;

standardize the programming model,
not the nodes

 Change from Political Tempo
(standards) to Technical Tempo (code)

 Balance Usability, Flexibility,
Performance and Security

*”SwitchWare: Accelerating Network Evolution (White Paper)”, 1996
+ “Softnet – Packet Radio in Sweden”, J. Zander, Proc. ARRL, 1981

10

Smart Hosts
+

Dumb Switches
are limited

Smart Hosts
+

Smart Switches
are not limited

Active Networks enable new distributed systems

11

SwitchWare* Approach
 Modern Programming Language

technology (CAML) can help with safety
and security+, maybe even performance

 Build flexible node executing programs
written in such languages

 Use language mechanisms to restrict
programs for safe multiplexing of nodes
in a network

* “The SwitchWare Active Network Architecture”, Alexander, et
al., IEEE Network, May/June 1998
+ “A Secure Active Network Environment Architecture: Realization
in SwitchWare, Alexander, et al., IEEE Network, May/June 1998

12

PLAN

ALIEN/Caml/OS

AEGIS Static
Integrity
Checks

Dynamic
Integrity
Checks

Node-Node
Authentication

Recovery

SwitchWare Architecture

ALIEN
Library

PLAN
Packet

PLAN
Packet

Caml
Switchlet

Caml
Switchlet

Active Bridging*

Linux
Kernel Input

 NIC
Output
 NIC

LAN #1 LAN #2 Frame Frame

Caml
System Loaded

modules

. .

* Alexander, et al., Proc. SIGCOMM 1997

14

ALIEN Active Loader*

active
code

Loader

Core Switchlet

libraries

Runtime (Caml)
OS (Linux)

Protection
Boundary

Mutability
Boundary

* “The Price of Safety in an Active Network”, Alexander, et al.,
Journal of Communications and Networks, Marrch 2001

15

Resource Controlled AN
Environment (RCANE*):

Application Application

Execution
Environment

A

Execution
Environment

B

Node Operating System
(e.g., Nemesis, XP, Linux, Vista?)

“A” share
of machine

“B” share
of machine

* “The Price of Safety in an Active Network”, Alexander, et al.,
Journal of Communications and Networks, Marrch 2001

AN node hardware: multi-proc?

 Control or forwarding. Bus unrealistic

100BaseT 100BaseT

100BaseT ATM
OC3/12

NIC

NIC

NIC

NIC

P1 P2 P3 P4

L2 L2 L2 L2

512 MB ECC

A.N. Switch* Architecture

 Active Port Controllers, e.g., Intel IXP
(original 1995 design was i960 OPCv2)

Input
Port #1

Input
Port #2

Output
Port #2

Input
Port #3

Output
Port #1

Output
Port #3

* “SwitchWare: Accelerating Network Evolution (White Paper)”, 1996

18

Deployability?: Active Router
Control*

 IP Router/Forwarders co-located with
Active Elements:

IP

IP
IP

IP

Active
Element

LAN

Forwarding
Tables

Routing Policies and
Decisions (and New
Services)

* “Activating Networks”, Smith, Calvert, Murphy, Orman,
Peterson, IEEE Network, April 1999

Less ambitious approaches derived
from AN are more deployable:

 Overlays (e.g., PlanetLab)
 No control of underlays (as noted in *)

 Network Virtualization (e.g., GENI)
 RCANE idea, with switch support

 OpenFlow
 Active Router Control with flow API

19

*”SwitchWare: Accelerating Network Evolution (White Paper)”, 1996

20

Distributed Application #1:
Content Selection

 Nets and computers improving
exponentially. Sadly, humans not.

 Active nodes (perhaps content-
centric?) contain “delegates”
 select information (watching a million

cameras at once……)
 forward towards you for consumption
 your senses extended into the network

John Boyd’s OODA Loop:
how to win an arms race

•  Faster cycles than
adversary: wins
•  Technologies
should therefore
focus on
accelerating
OODA loop cycles
•  Programmability
is a key accelerator

Distributed App. #2: Networks Opposing Botnets (NoBot)*

*New work w/
Harvard &
Princeton, to
be supported
by ONR

23

Lessons Learned*
 Interoperability problems not removed; just

moved.
 Performance acceptable for access networks
 CAML technical win, marketing lose
 Restricted language for packets a win

 May need to augment with cryptographic tools
 Did not allow enough time for network versus

node work (should have been 5-6 year project,
not 3+)

 Needed more focus on Active Applications

*”Active Networking: One View of the Past, Present and Future”,
Smith, Nettles, IEEE Trans. Sys., Man & Cybernetics, Feb. 2004

24

Acknowledgments:
 SwitchWare and Protocol Boosters

were joints project of Penn and Bellcore
(Telcordia), supported by DARPA
 Extensive literature

 Responsible parties named there!
 RCANE was a collaboration with Cambridge

University, described in Paul Menage’s
Ph.D., and supported at Penn by NSF

 Hewlett-Packard, Intel, 3Com & Nortel

25

 ?????

Questions and Discussion

