

Recursive Networks

Joe Touch USC/ISI

With: Yu-Shun Wang
Lars Eggert
Venkata Pingali

Internet Architecture

Accused of ossification, but:

- Ossification = stability
- Flexibility is abundant:
 - Shim layers:
 - HIP, SHIM6, IPsec, TLS
 - Muxing layers:
 - SCTP, RDDP, BEEP
 - Connections:
 - MPLS, GRE, IKE, BEEP, SCTP
 - Virtualization:
 - L2VPN, L3VPN/X-Bone/RON/Detour, L7-DHTs

Motivation

- Layers of a stack becoming more similar
 - Security, soft-state, pacing, retransmission
- Desire to support new capabilities
 - Interlayer cooperation, dynamic layer selection
- Desire to support emerging abstractions
 - Overlay layers don't map to 1-7
 - Support for recursive nodes (BARP, LISP, TRILL)

Is layering more than a coding artifact?

Net Arch - Assumptions

Internet-Compliant Architecture

- Hosts add/delete headers
- Routers transit (constant # headers)

Supports New Capabilities

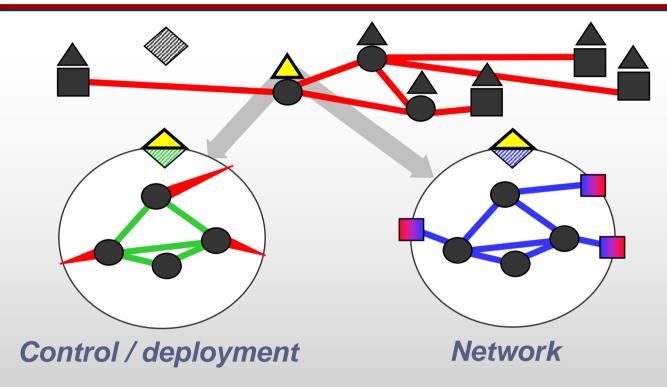
- Concurrence (multiprocessing)
- Revisitation (multiple roles in one net)
- Recursion (to hide topology and/or mgt.)

Virtual Networks

Internet-like

- Internet = routers + hosts + links
- VIs = VRs + VHs + tunnels
- Full architecture (vs. VPNs, PP-VPNs, etc.)

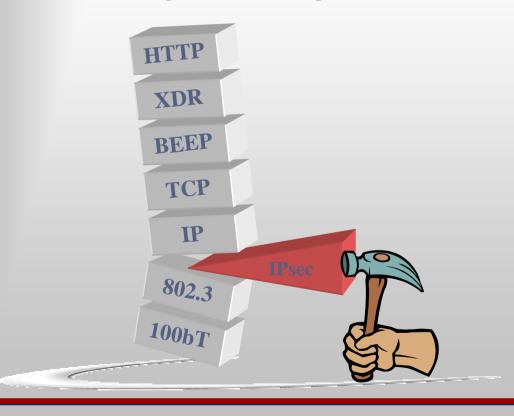
- All-Virtual

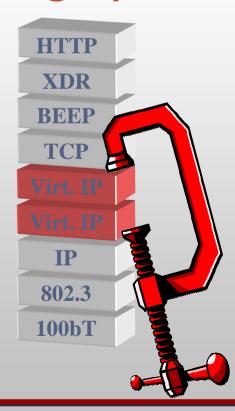

- Supports VNs on VNs
- "Reality" is undecidable

- Recursion-as-router

- Some of VRs are VI networks
- See Globecom 1998 (running code 2000)
 - 15 layers deep, 800 wide, app. deploy, P2P integration

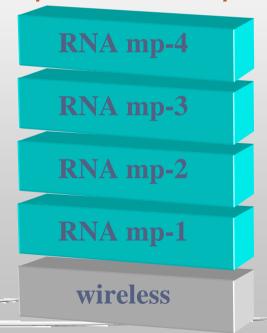
Recursive Internet (2003)




- Recursion as a router
 - L3 = BARP (X-Bone), LISP (IRTF)
 - L2 = Rbridges/TRILL

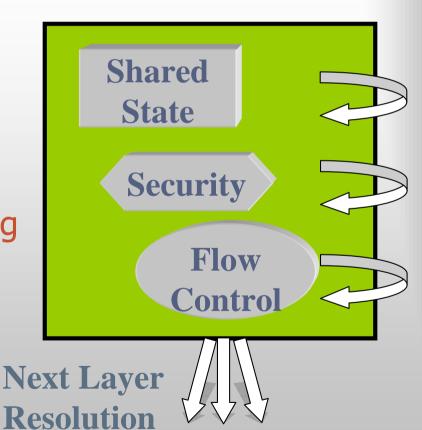
Recursion requires new layers – where? Why?

Wedge between (IPsec, left)
 or replicate (virtualization, right)



RNA Stack (2006)

- One MP, many instances
 - Needed layers, with needed services
 - Layers limit scope, enable context sensitivity
 - Scope defined by reach, layer above, layer below



RNA Metaprotocol

- Template of basic protocol service:
 - Establish / refresh state
 - Encrypt / decrypt message
 - Apply filtering
 - Pace output via flow control
 - Pace input to allow reordering
 - Multiplex/demultiplex
 - includes switching/forwarding

MDCM from Choices

Structured template w/plug-in functions

- Layer address translate/resolution
 - ARP, IP forwarding lookup
 - BARP/LISP/TRILL lookup
- Layer alternates selection
 - IPv4/IPv6,TCP/SCTP/DCCP/UDP
- Iterative forwarding
 - IP hop-by-hop,DNS recursive queries

```
LAYER(DATA, SRC, DST)

Process DATA, SRC, DST into MSG
WHILE (Here <> DST)

IF (exists(lower layer))

Select a lower layer

Resolve SRC/DST to next layer

S',D'

LAYER(MSG, S', D')

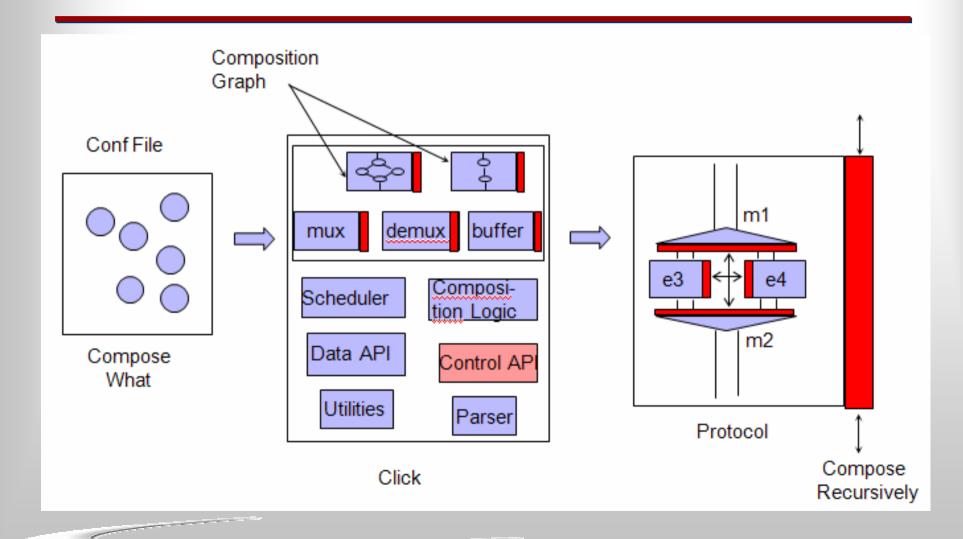
ELSE

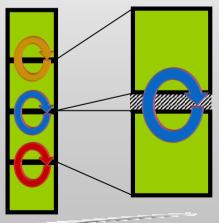
FAIL /* can't find destination */

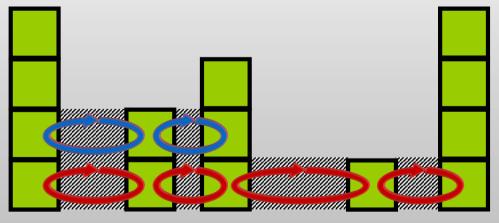
ENDIF

ENDWHILE

/* message arrives here */


RETURN {up the current stack}
```



Click Implementation



Recursion supports Layering and Forwarding

- Layering (left)
 - Heterogeneity via O(N) translators
 - Requires successive recursive discovery
- Forwarding (right)
 - N² connectivity via O(N) links
 - Requires successive iterative discovery

Related Work

- Recursion in networking
 - X-Bone/Virtual Nets, Spawning Nets, TRILL, Network IPC, LISP
 - RNs natively include resolution and discovery
- Protocol environments
 - Modular systems: Click, x-Kernel, Netgraph, Flexible Stacks
 - Template models: RBA, MDCM
 - RNs adds a constrained template with structured services
- Context-sensitive components
 - PEPs, Shims, intermediate overlay layers, etc.
 - RNs incorporates this into the stack directly
- Configurable über-protocols
 - XTP, TP++, SCTP
 - RNs make every layer configurable, but keeps multiple layers.

Conclusions

- Virtualization requires recursion
- Recursion supports layering
- Recursion supports forwarding

One recurrence to bind them all...

- Recursion is a native network property
 - Integrates and virtualization, forwarding and layering in a single mechanism