F

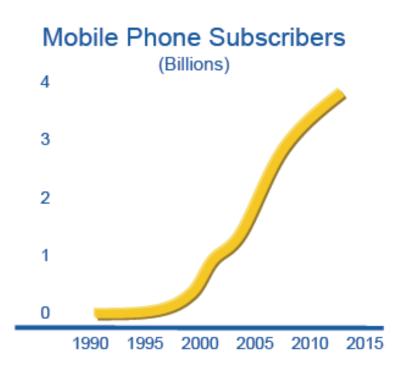
Reinventing the Internet: Platforms for Innovations

Guru Parulkar parulkar@stanford.edu http://cleanslate.stanford.edu

Key Takeaways

Big changes on the horizon

- Internet will look very different in five to ten years
- Big changes means big opportunities
 - For researchers, Research & Education Networks, & other stakeholders
 - If we don't take the lead, we will get results we will not like
- Stanford Clean Slate Program
 - Reinvent Internet by creating platforms for innovations
- OpenFlow Network Platform
 - Open the Internet infrastructure for innovations
- OpenFlow as architecture concept
 - Old concepts new context still potential for big impact


Persistent Problems: Making Internet Infrastructure Worse

"... in the thirty-odd years since its invention, new uses and abuses, ..., are pushing the Internet into realms that its original design neither anticipated nor easily accommodates."

"Freezing forevermore the current architecture would be bad enough, but in fact the situation is deteriorating."

Overcoming Barriers to Disruptive Innovation in Networking, NSF Workshop Report, 05.

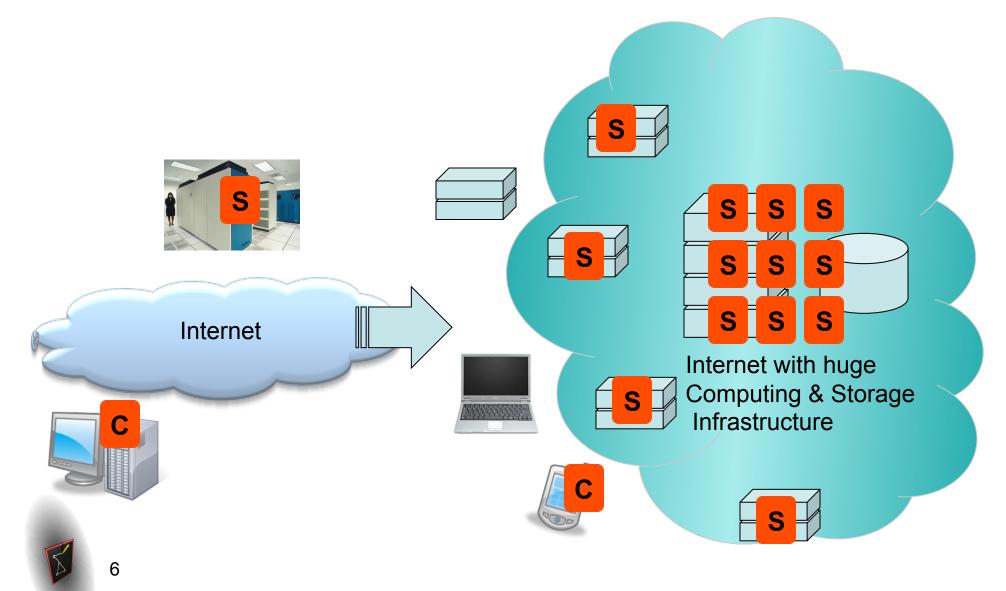
Revolution in Mobile Computing *Millions* → *Billions*

Democratization of computing

Entirely new uses of mobile computing

Power-limitation of handheld ⇒ computation will move to the cloud Need to back up and refresh our lost data ⇒ data will move to the cloud

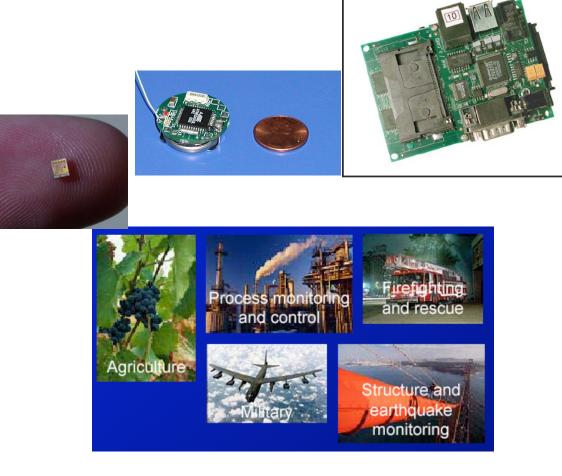
We are Losing Control of Our Data



Our data

- moving into the cloud
- "owned" by applications => users losing control
- difficult to share among applications
- leakage a serious problems

Trends to accelerate unless checked...


Computing and Storage Moving Into the Cloud

Cyber-Physical World

New Machines

New Environments New Applications

Billion to trillion devices!

Network Centric Critical Infrastructures

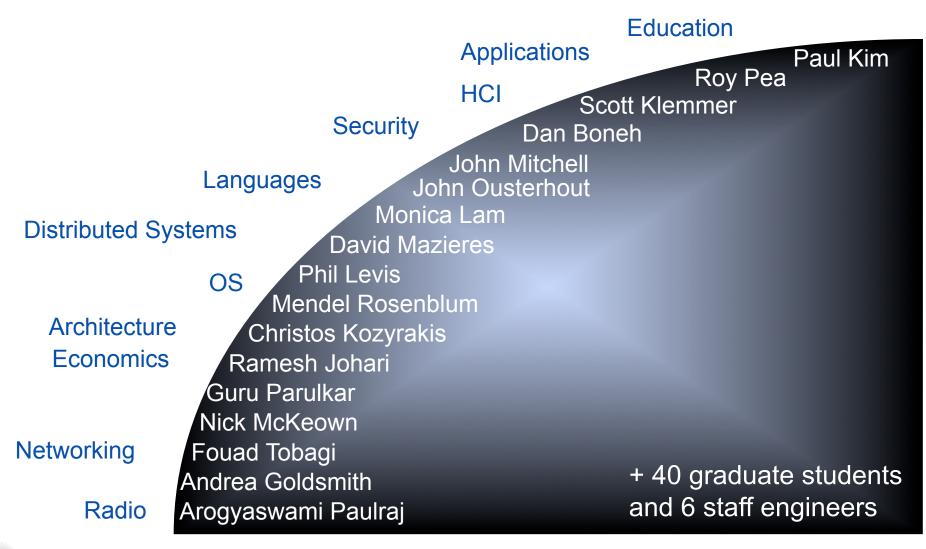
Transportation

Internet Architecture is NOT robust enough to support these

communications

Essential Utilities

Big Changes Represent Big Opportunities


Opportunities for

- Research groups to shape future Internet
- Research and education networks
- Startups to create new product categories
- Incumbents to get into new markets and grow
- Newcomers to leapfrog

Otherwise incumbents will take it in directions we will not like

Stanford Clean Slate Team

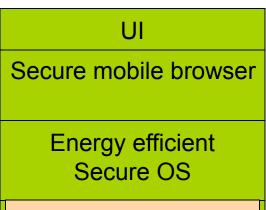
Departments of EE, CS, MS&E and School of Education

Stanford Clean Slate Program

To reinvent Internet infrastructure and services

by creating key platforms for innovations and deploying and making them available to research and user communities

with emphasis on mobile computing



The Big Picture

Applications

PocketSchool, Virtual Worlds, Augmented Reality

Handheld

HW Platform

Computation Substrate

Network of VMs, Mobile VMs Fiz web services environment

Data Substrate PRPL Virtual Data System Economics

Network Substrate

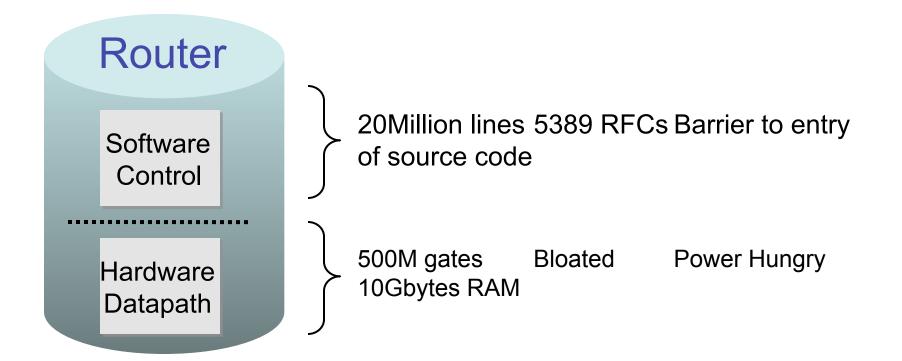
OpenFlow

Radio technology Multi-Gb/s, 99% coverage

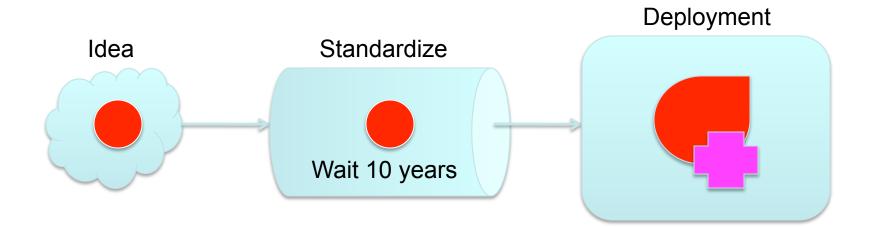
X

Key Takeaways

Big changes on the horizon


- Internet will look very different in five to ten years
- Big changes means big opportunities
 - For researchers, Research & Education Networks, & other stakeholders
 - If we don't take the lead, we will get results we will not like
- Stanford Clean Slate Program
 - Reinvent Internet by creating platforms for innovations
- OpenFlow Network Platform
 - Open the Internet infrastructure for innovations
- OpenFlow as architecture concept
 - Old concepts new context

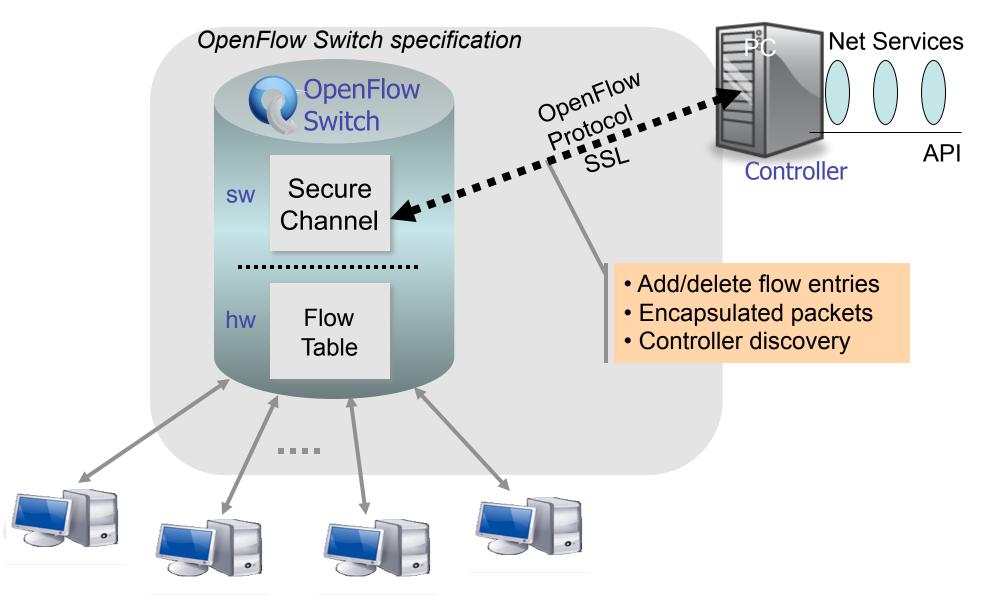
Internet has many problems
Plenty of evidence and documentation
Internet's "root cause problem"
It is Closed for Innovations



Why Internet Closed for Innovations?

Many complex functions baked into the infrastructure OSPF, BGP, multicast, differentiated services, Traffic Engineering, NAT, firewalls, MPLS, redundant layers, ...

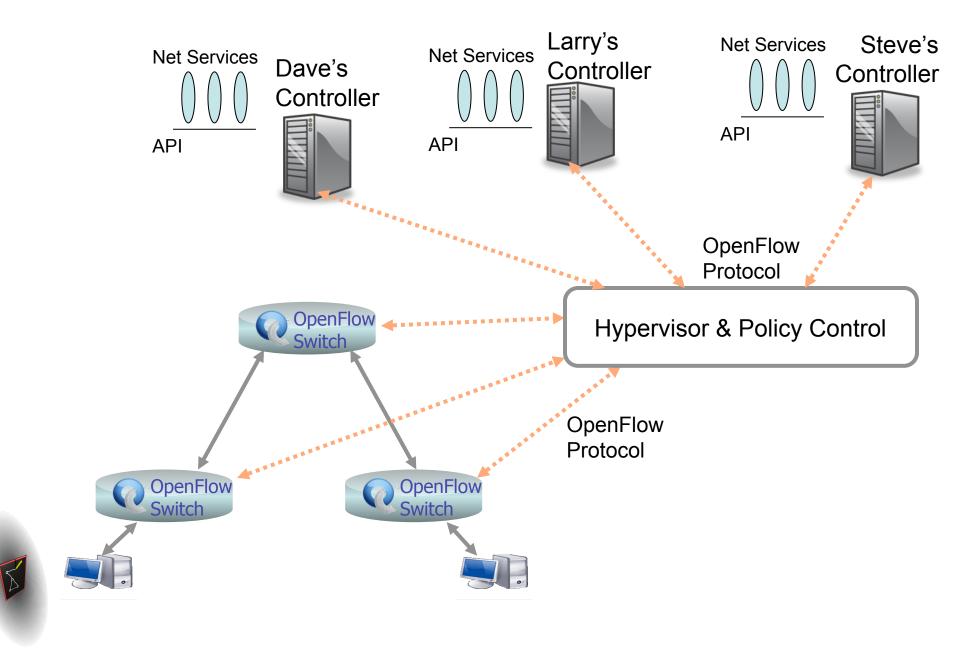
Process of (Lack of) Innovation


- Equipment vendors own the process
- Equipment closed
- Almost no technology transfer from research
- Not good for equipment vendors either

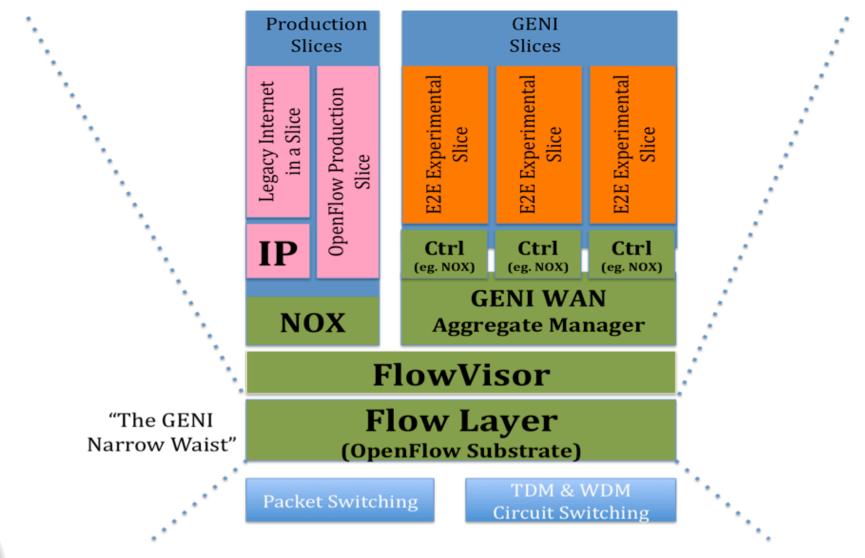
Imagine Internet Infrastructure

That continuously evolves & Is under the control of the users, owners and their applications & Is open to public scrutiny

OpenFlow: Enable Innovations "within" the Infrastructure


Example Network Services

- Static "VLANs"
- New routing protocol: unicast, multicast, multipath, load-balancing
- Network access control
- Home network manager
- Mobility manager
- Energy manager
- Packet processor (in controller)
- IPvX
- Network measurement and visualization



❖

Virtualized OpenFlow Substrate

OpenFlow Deployment Model: Enterprsie and WAN Backbones

The Stanford Clean Slate Program

http://cleanslate.stanford.edu

OpenFlow Deployments

Research and Production Deployments on commercial hardware Juniper, HP, Cisco, NEC, (Quanta)

- Stanford Deployments
 - Wired: CS Gates building, EE CIS building, EE Packard building (soon)
 - WiFi: 100 OpenFlow APs across SoE
 - WiMAX: OpenFlow service in SoE
- Other deployments
 - Internet2
 - JGN2plus, Japan
 - 10-15 research groups have switches

Our Approach

- 1. Define the substrate
 - ✓ Define the OpenFlow feature
 - Add to commercial switches, routers, APs and basestations
- 2. Deploy on college campuses
- 3. Deploy in national networks
- 4. Deploy in enterprise networks

OpenFlow…

- Puts control into the hands of users, owners and applications
- ✓ Allows continued evolution of the network

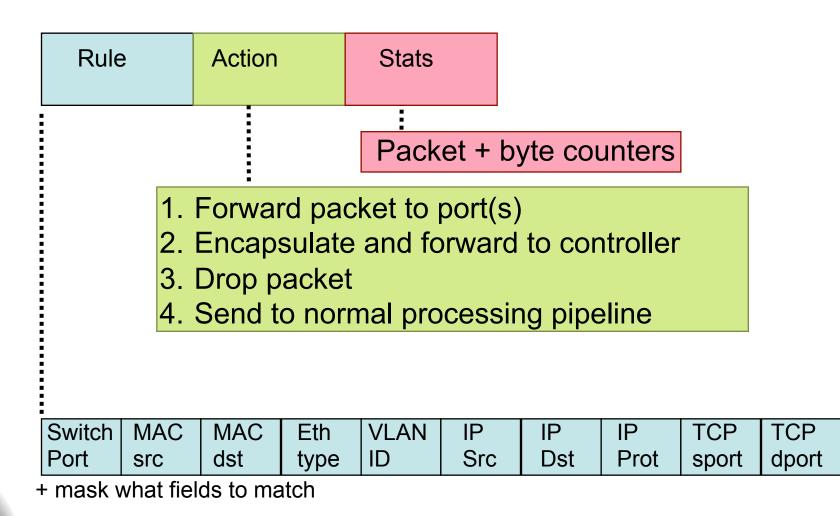
Many Open Questions!

- 1. Scalability of a controller
- 2. Load-balancing over redundant controllers
- 3. Federation, hierarchy and aggregation
- 4. Protecting the controller against DDOS
 5. ...

Our goal is to enable the research community to explore all these questions OpenFlowSwitch.org

Key Takeaways

Big changes on the horizon


- Internet will look very different in five to ten years
- Big changes means big opportunities
 - For researchers, Research & Education Networks, & other stakeholders
 - If we don't take the lead, we will get results we will not like
- Stanford Clean Slate Program
 - Reinvent Internet by creating platforms for innovations
- OpenFlow Network Platform
 - Open the Internet infrastructure for innovations
- OpenFlow as architecture concept
 - Old concepts new context

OpenFlow: Architecture Concept

- Separate data from control
- Define a flow based data path
 - Very flexible and generalized flow abstraction
 - Delayer L1-L7
- Innovate with new network services in control plane
 - Give control of networks to providers, app developers, ...
 - "Network capabilities as a service" model
- Unified control of circuit and packet networks
- Backward compatible
 - Easy to support in existing switches/routers and hosts

Flow Table Entry OpenFlow Protocol

Generalized Flexible Flow Definitions

Switching

* * 00:1f: * * * * * * * * * po	Switch Port	MAC MAC src dst	Eth type I	VLAN ID	IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
									_	port6

Flow Switching

	hMAC src				IP Src	IP Dst	IP Prot	TCP sport	TCP dport	Action
port3	00:2 0 0):1f	0800	vlan1	1.2.3.4	5.6.7.8	4	17264	80	port6
Firewa	ıll									

Switch Port						IP Dst	IP Prot	TCP sport	TCP dport	Forward
*	*	*	*	*	*	*	*	*	22	drop

Generalized Flexible Flow Definitions

Routing

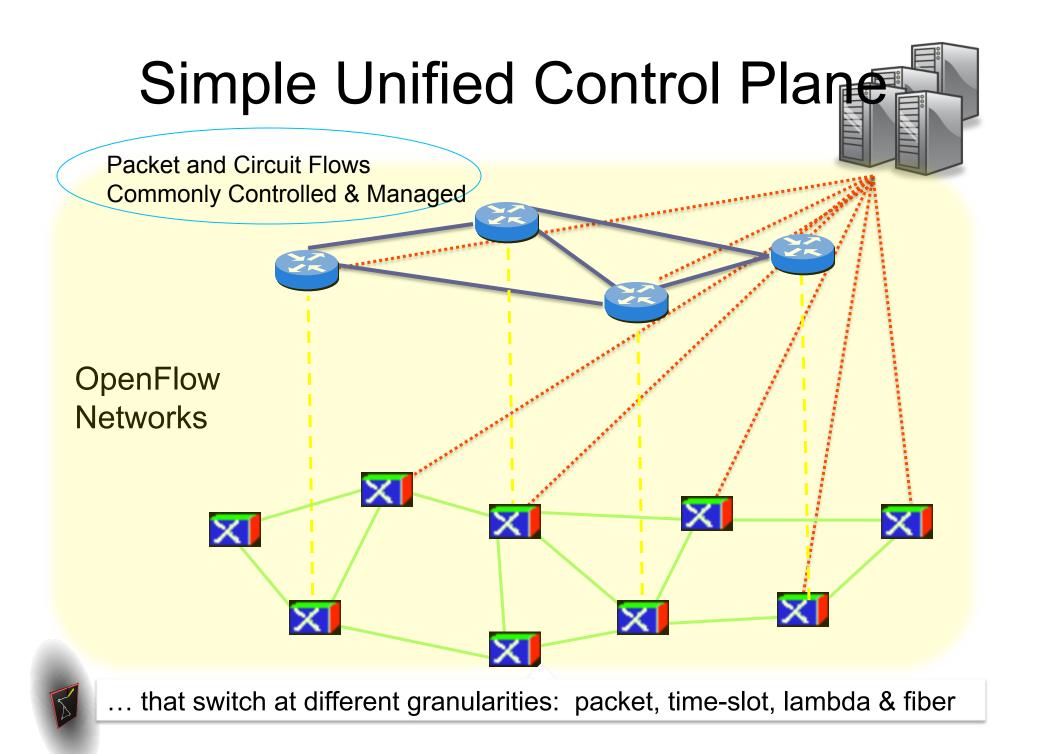
	nMA src		Eth type			IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*	*	*	*	5.6.7.8	*	*	*	port6
VLAN										

Switch Port	nMA(src	С	MAC dst	Eth type	VLAN ID		IP Dst	IP Prot	TCP sport	TCP dport	Action
*	*	*		*	vlan1	*	*	*	*	*	port6, port7, port9

OpenFlow and Circuit Switches

Packet Flows

Switch	MAC	MAC	Eth	VLAN	IP	IP	IP	ТСР	ТСР	Action
Port	src	dst	type	ID	Src	Dst	Prot	sport	dport	Action


Exploit the cross-connect table in circuit switches

Circuit Flows

In	In	VCG	Starting	Signal	Out	Out	VCG	Starting	Signal
Port	Lambda		Time-Slot	Туре	Port	Lambda		Time-Slot	Туре

Flow abstraction applies to packet and circuits

OpenFlow: Old Concepts?

- Flow and separation of data and control
 - Telephone nets, ATM, IntServe with RSVP, ...
- Programmability and giving control to operators, app developers, users
 - Active Networks, Programmable Networks
- Virtualization
 - VPNs, Overlay Networks, Xbone, ...
- Cross layer design
- Application level framing

*

Carefully selected old concepts in a new context exploiting technology trends can be very powerful.

Old Concepts New Context

- Emphasis on enabling innovations
 - Different from many other architectures
 - Allow choices and create a market place of ideas
- Generalized definition of flow
 - Exploiting state of the art hardware capabilities
 - L1-L7 de-layering
- Centralization of control with servers/data centers
 - Programmability in server context for control path
 - "Network capabilities as a service" model not part of infrastructure
 - E.g., Routing, Mobility Management, Access Control, ...
- Virtualization of data and control paths
- Bring significant change with backward compatibility

Key Takeaways

Big changes on the horizon

- Internet will look very different in five to ten years
- Big changes means big opportunities
 - For researchers, Research & Education Networks, & other stakeholders
 - If we don't take the lead, we will get results we will not like
- Stanford Clean Slate Program
 - Reinvent Internet by creating platforms for innovations
- OpenFlow Network Platform
 - Open the Internet infrastructure for innovations
- OpenFlow as architecture concept
 - Old concepts new context

