Information Dispatch Points

Christophe Jelger University of Basel, Switzerland christophe.jelger@unibas.ch

NetArch Symposium Ascona, Switzerland, 17th March 2009

Research Context

- EU funded ANA Project (FP6, FET, SAC)
 - 4 years (2006-2009)
 - 10 European partners, 1 Canadian partner
- Goal of the project: demonstrate self-* properties with a running prototype.
 - On the network architecture side: build a minimal network node/system ready to host new (and disruptive) protocols and networking schemes.

ANA in a blink: abstractions

- Compartment: "wrapper" for networks
- Information Channel (IC): generic communication channel.
- Information Dispatch Point (IDP): generic indirection system.
- Functional Block (FB): packet processing entity.

ANA in a blink: API

The API has 6 fundamental primitives.

- IDP_p publish(IDP_c, CONTEXT, SERVICE)
- int unpublish(IDP_c, IDP_p)
- IDP_r resolve(IDP_c, CONTEXT, SERVICE)
- int release(IDP_c, IDP_r)
- void* lookup(IDP_c, CONTEXT, SERVICE)
- int send(IDP_r, DATA)

ANA in a blink: example

Publishing an IPv4 address in the Ethernet compartment.

z <-- publish(y, "*", "10.1.2.3)

ANA in a blink: example

Resolving an IPv4 address in the Ethernet compartment.

s <-- resolve(e, "*", "10.1.2.3")

ANA in a blink: example

Sending data.

send(s, DATA)

So what about IDPs?

- Actually the "ANA Core" machinery solely operates on IDPs:
 - packet forwarding inside the node is based on IDPs.
 - Each IDP has a unique node-local flat value.
 - all components inside the node are identified by IDPs.
 - all bindings between components are via IDPs (and binding information is stored in IDPs)

So what about IDPs?

- IDPs are more than just indirection points.
 - Each IDP stores a lot of information: binding info, information channel info, MTU, access rights, status (ready,busy), + whatever state the component bound to it wants to store (e.g. TCP session info).
 - IDPs can be manipulated dynamically: binding, forking (T shape), redirection.
 - e.g. it's possible to replace a component with a new or optimized version and re-attach all IDPs to the new part.

Main benefits of IDPs

- The "ANA Core" is simple and extensible: "everything is an IDP".
- Indirection (i.e. flexibility, loose binding) is builtin by default in the core node machinery.
- The "ANA Core" machinery is fully address and name agnostic: it only handles local labels.

Can I use that to build networks?

- Yes of course: check the ANA website for our Linux-based prototype.
 - Ethernet, IP, + many research-oriented protocols, all developed around the minimum "ANA Core".
- Coming in 2009:
 - A scripting language to dynamically configure the components and run-time behaviour.
 (most likely C-LUA binding with concurrency)

Thank you for your attention

Questions?

Want to learn more? Google "ANA Project"